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Abstract— This paper presents a biologically inspired ap-
proach to posture recognition and posture change detection for
a biped robot. Slow Feature Analysis, an algorithm developed
by theoretical biologists for extracting slowly changing signals
from signals varying on a fast time scale, is applied to the
problem of recognizing the posture of biped humanoid robots
over time and successively on the recognition of the change of
posture. Both the recognition of basic static postures, like lying
and standing, of peer robots via visual sensory information and
the recognition of the same postures via internal proprioceptive
sensors are considered. Given promising results in this domain
we extend the application of the method onto the dynamic
domain of detecting the change of posture, specifically we show
the utility of the algorithm for detecting when a robot falls.

I. INTRODUCTION

In recent years there has been a growing interest in
the robotics community to build robots that can interact
with humans in “natural” environments in a human-like
fashion. As of today robots in robot-human interaction are
usually seen as inferior with regards to basic human motion
capabilities, requiring in many cases that the human adopts
herself to the need of the robot or, even more, makes
humans constrain the environment to be suitable for the
particular robot platform. However, to truly integrate robots
in non-augmented human environments one has to equip
them with human-like capabilities, which evidently not only
includes high level cognitive functions, such as language,
categorization or social behavior, but also basal motion and
perceptual competence.

One such basic capacity is the recognition of basic pos-
tures, be it intrinsically, when the robot has to decipher
his own posture, or extrinsic, when interpreting the postural
state of robots or agents in the environment. In order for
humanoid robots to aid and support humans in their daily
life they need to be aware of their posture or the posture of
others. Humans are without doubt excellent in recognizing
postures, which is due to the ubiquity of basic postures such
as sit, stand and lie in the interaction with the environment.
Postures are a wide field, we just want to point out one
particularly interesting linguistic phenomenon highlighting
their significance. In some languages postures underlie the
entire conceptualization of space and are even extended
metaphorically into time and abstract domains (see [4] for a
case study involving robots).
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Another human capacity, even more entrenched with the
sensorimotor control loops driving humans incredible biped
walking competence, is that of posture change detection.
Humans are astonishingly good at detecting even slightest
perturbations in walking gait patterns and can correct their
movements accordingly when tripping or when the ground
changes. When all correction reflexes fail we quickly adopt
a safety posture and we do so largely without conscious
awareness, i.e. reflexes like extending arms to dampen the
collision are executed after short reaction times.

This paper reports on recent progress in using a bio-
logically inspired algorithms on these two tasks of basic
human motion control. The algorithm called Slow Feature
Analysis is first applied to the problem of statically recog-
nizing postures. We analyze the performance of the algorithm
given visual and proprioceptive stimuli. Given promising
results from the application of the algorithm to the static
recognition problem, we supplement the investigation and
report on first results extending the usage to detecting the
change of posture, that is the change from upright position
to vertical position, which is particularly interesting for
stabilizing walking gait patterns.

Slow Feature Analysis is an algorithm developed in a
group of theoretical biologists headed by Laurenz Wiskott
and is optimal for extracting slow varying parameters from
time series data. The algorithm belongs to a family of
algorithms that try to extract signals that change slowly over
time, that still carry a maximum of information from fast
changing source signals. While SFA has been applied to
the domain of vision and, for instance place cells in the
hippocampus, its potential for mobile robotics has been left
largely unexplored. We demonstrate the applicability of the
algorithm to autonomous robot systems research.

We start by introducing the particular algorithm used in
this paper, followed by introduction to the specific robot
platform used to test the algorithm. The subsequent sections
introduce the approach taken for the particular domains
of posture recognition and posture change detection. We
conclude by discussing the outlook for using the algorithm
in real-time settings and will compare the approach proposed
here briefly to existing literature.

A. Slow Feature Analysis

Slow feature analysis belongs to a class of unsupervised
learning algorithms that try to solve a particular optimization
problem related to temporal slowness (see [8] for the initial
publication and [10] for a detailed analysis). The problem
is formulated as follows: [1] Given a potentially multidi-



mensional input signal x(t) = [x1, .., xN ]T the algorithm
identifies scalar functions gj(x), j ∈ J that determine the
output of the system gj(x(t)) = yj(t), where yj are the
output functions over time. The process of finding the gj
real valued functions is governed by a set of constraints that
capture the essence of the problem that SFA tries to solve.
The algorithm tries to find a set of functions gj such that for
the output functions yj the following constraint holds

∆〈yj〉 := 〈ẏj2〉t is minimal (1)

where 〈·〉t signifies the average over time and ẏ is the
derivative of y. This constraints specifies the actual learning
problem. Namely, we are searching for the slowest varying
output signal. ∆〈yj〉 is minimal if yj is not changing
rapidly, but varies leisurely over time. Since every constant
function would easily fulfill this restriction, three additional
requirements are formulated.

〈yj〉t = 0 (zero mean) (2)
〈y2
j 〉t = 1 (unit variance) (3)

∀i < j〈yiyj〉t = 0 (decorrelation, ordering) (4)

Equations 2 to 4 constrain the possible set of solution
functions to a meaningful subset of all functions satisfying
1. Especially Equations 3 and 4 are important. Equation
3 forces the output signal to carry information. Equation
4 induces an ordering on the output signals: the slowest
signal should be first. But more importantly, it requires output
signals to be decorrelated. Different aspects of the input are
coded for by different output signals [1].

Slow Feature Analysis provides a solution to learning the
real valued functions gj by proposing a sequence of pro-
cessing stages1. When learning the functions gj , sometimes
also called transfer functions, the algorithm operates on a
given time series data set and estimates a set of parameters
such that later in application the slowest varying signal
is determined. Let the input signal be x = [x1, .., xN ]T ,
where N is the dimensionality of the input. And let g =
[g1(x), ..., gJ(x)]T be the transfer functions, where each
gj(x) := wjkhk(x) is defined as the weighted sum of some
functions hk.

Since the optimization problem is in general hard to
solve, the set of possible solutions is further constrained
by asserting that the gj transfer functions are linear com-
binations of a finite set of basis functions. In order to
solve the optimization problem linearly, the input signal is
first expanded given an appropriate set of basis functions
h = [h1, .., hk]T with k ∈ K. Typically monomials are
chosen as basis functions, because they serve as a basis
for the vector space of polynomials or at least some finite
dimensional subset of that vector space. Since we are only
interested in computations that conclude in a finite amount of
time, monomials up to a certain order are used to nonlinearly
expand the input signal.

1We will focus in the following on a specific linear variant of SFA,
because it is the most useful when dealing with real world data. Additional
variants exist and are mentioned in [8], [10], [9].

The expansion basis is given by the system designer,
leaving the weights to be learnt. Parameters are learnt on a
training input signal called x̃ (same dimensions as x), which
should share some of the properties of the target input signal,
since the characteristics of the signal will lead to a specific
set of parameters that will only generalize well if learnt on
sufficiently rich training data. First, the training input signal
is normalized to obtain a zero mean, unit variance signal. The
resulting signal is expanded given the set of nonlinear basis
functions h, which yields z̃(t) := h(x̃(t)). The expanded
signal is sphered (sometimes also called whitened), an affine
transformation, which yields z(t) := Sz̃(t), where S is the
sphering matrix, such that 〈z〉 = 0 and 〈zzT 〉 = I (z has
zero mean and cov(z) = I). S is usually obtained using
Principal Component Analysis and, therefore, dependent on
the training set. Finally, PCA is also applied to the time
derivative of the sphered signal. However, ordering the com-
puted eigenvalues λj and their corresponding eigenvectors,
not like usually done when computing the PCA biggest first,
but the other way around, gives us the parameters wjk for the
transfer functions gj(x) = wTj h(x), with λjwj = 〈żżT 〉wj ,
where λj is one of the eigenvalues of the covariance matrix
of ż and λ1 ≤ ... ≤ λJ . It can be shown that the wjk fulfill
the constraints posed in the original optimization problem.
Notice how PCA is employed to find the smallest eigen-
values. While PCA orders the eigenvalues of the covariance
matrix decreasingly, we here search for the slowest varying
signal, that is the signal with the smallest time derivative,
hence the smallest eigenvalue.

Since the input signal (which might already be from a high
dimensional input space) is further extended in dimension-
ality by the basis functions, SFA does suffer heavily from
the curse of dimensionality. There are two principal ways
to deal with the explosion in dimensionality. First, Slow
Feature Analysis can be applied successively in networks of
SFA nodes, where every node is described by the nonlinear
expansion basis (equal for all nodes), plus the set of linear
transfer functions g and their weights w. In such a scheme,
the SFA algorithm is applied first to an input signal, but
than the output of the SFA component is fed to other SFA
units performing the same algorithm with possibly different
estimated parameters based on the already filtered signal
and so on and so forth. Another way of dealing with high
dimensional input data is by reducing dimensionality of the
input space, for instance by applying PCA before applying
SFA. Notice that, applying PCA before applying SFA does
not necessarily harm the outcome of SFA, as PCA does not
operate on local phenomena (like the derivative) but tries to
account for highest variability, a time independent measure
of a signal (i.e. the order of data points does not matter).

B. Embodiment

In the next sections we show how we applied SFA to sen-
sori data streams stemming from a humanoid robot platform,
called A-series. The platform was specifically developed for
researching basic motion capacities, most importantly biped
walking, which as of today is still arguably an unsolved task.



The robot is based on a commercially available robot kit,
called Bioloid. The kit was augmented by adding processing
power, a camera and additional sensors. A PDA computer
attached to the back processes visual information inflowing
from the camera. Eight microprocessor boards, each featur-
ing a two-axes acceleration sensor, are distributed across the
body for actuator control (boards are located on the hips,
arms and shoulders). Each board controls up to two actuators,
while communicating via a shared system bus, that connects
the boards with the PDA and allows for blackboard style
sharing of information. The robot features 21 degrees of
freedom, 19 in the body, including ellbow, hand, hip, knee
and foot joints, as well as motors driving the pan tilt unit for
the camera.

II. POSTURE RECOGNITION

For the experiments reported in this section we equipped
the robots with a basic vision system segmenting the envi-
ronment and with basal motion capabilities, such as walking,
standing, getting up after falling and so forth. Moreover,
robots are given motor control programs for performing
various dance-like arm movements. While motions are per-
formed, robots collect sensori data streams in real-time.
These streams consist of proprioceptive data (acceleration
sensor values, controlled and sensed motor positions as well
as torque values), as well as exteroceptive data from the
vision system (see Figure 4 for an overview and a graph
of the time series data used in this section),

We hypothesize that the ensemble of proprioceptive data
and visual data can be used to identify basic postures or
pivotal poses of robots, most importantly standing and lying,
or more generally speaking upright and horizontal position,
and that Slow Feature Analysis is useful in extracting seman-
tically relevant signals, i.e. the slowest varying signal codes
for the basic posture of the robot. To show the correctness
of the hypothesis and study the effect of the algorithm, we
apply SFA to parts and the whole of recorded sensori data
streams. In the next section we first present our approach
to implementing SFA for the particular task of posture
recognition and subsequently show the results.

A. Algorithm and Data

The complete set of data recorded by the robot is an
86 dimensional signal, including all proprioceptive mea-
surements and exteroceptive data. Exteroceptive data stems
from a vision system segmenting and tracking robots in the
environment based on visual data from the camera of the
robot. The system extracts a set of scale and translation
invariant global shape description features for all objects that
have not been in the environment before (see Figure 1 for
an overview of processing steps, as well as [4] and [7] for a
more detailed description, which has been omitted here for
space constraints).

We apply quadratic SFA, which means that the nonlinear
basis functions are all combinations of variables of length
two, plus all input dimensions squared, plus all original sig-
nals. Because this leads to a huge increase in dimensionality,
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Fig. 1. Extraction of visual features. Top left: an original image captured by
an onboard camera of a robot. Top right: foreground/background subtracted
image. Bottom left: the connected component processing unit has identified
a single connected area, depicted by the bounding box. Bottom right: seven
normalized and centralized image moments, visual features computed for the
connected region, shown as a parallel plot (see [3] for a detailed description
of moments in image processing).
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Fig. 3. Ground truth signal and result signal from quadratic Slow Feature
Analysis on the complete input data stream (dimension reduced via a prior
application of PCA). Left: slowest signal extracted by SFA, when applied
to the complete 86 dimensional input signal. Right: ground truth signal, the
value zero means the robot is standing or in an upright position walking and
gesticulating with its arms, one means the robot is lying either on its back or
on its front. Without need for further evaluation the point is conveyed, that
indeed SFA extracts a signal that very precisely codes for the posture of the
robot. When applying simple thresholding to the slowest SFA result signal,
for example everything below zero, is one class of activity and everything
above zero another, we clearly see the correspondence between the SFA
generated signal and ground truth.

we apply PCA before applying nonlinear expansion and only
consider the transformed dimensions that together account
for 80% of variability in the input signal.

The algorithm operates on a sequence of data measured
while the robot is performing different motions, e.g. walking
and arm movements. The sequence has a total length of
approximately eight minutes, given an average camera frame
rate of eight frames per second, we recorded approx. 4000
frames. The robot trips and falls at two points in the
sequence, lies and gets up again after some time. While
performing these actions, the robot is watched by another
robot that executes the vision system just described. The
two data streams, the one from the proprioceptive sensors
on the performing robot and the visual feature stream ex-
tracted by the observing robot are time aligned and recorded
together. Since the proprioceptive sensors are updated on a
much smaller time scale then the camera captures images,
inflowing proprioceptive data is subsampled and time aligned
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Fig. 2. SFA resulting slowest signals on subset dimensions of the complete data stream. Left: slowest signal extracted by SFA when applied to acceleration
sensors only. Middle: slowest signal extracted by SFA when applied to all proprioceptive sensors Right: signal extracted by SFA when applied to visual
features over time. All data is generated by applying SFA on subset of the dimensions available in the original data set (see Figure 4). The graphs show
that just looking at certain input dimensions, such as only acceleration sensor data or only visual features, SFA can already extract a meaningful signal
(see Figure 3 for ground truth comparison) but jitter and noise are still high. Where as using combinations of data from different sources (middle image
showing the result when SFA is applied to all proprioceptive sensors) can yield substantially better performance. The middle image clearly allows for
separation of two activity classes (when taking everything above zero as one class and everything below zero as a second class).

with the camera images. All data dimensions are normalized
to the range of −1 and 1. A ground truth signal to measure
the performance of the algorithm was generated by the
experimenter to allow for direct comparison with the output
of SFA (see Figure 3).

For the experiment reported in this section we compute the
parameters of the transfer functions g on the complete set of
recorded data and reapply the learned weights, as well as the
preprocessing PCA transformation matrix onto the training
data. To study the influence of different dimensions we also
applied a single quadratic SFA node to subsets of all input
dimensions. Two subsets were of special interest: first, all
data stemming from the 8 acceleration sensors (in total 16
dimensions because of two axes per sensor) and the seven
visual feature dimensions. Both were studied in isolation and
SFA applied to them as well as to the complete signal.

B. Experimental Results

a) Results for acceleration data only: We first apply the
algorithm on acceleration data only, with the idea being that
essentially using just motor values does not disambiguate
between lying and standing. However, adding information
from global position indicators such as accelerations sensors
should be sufficient to decipher the posture. Notice that we
refrain here from preselecting data channels. All acceleration
sensors including the ones situated on the arms and legs are
used, which given gesticulating or walking movements show
a posture uncorrelated rapid change of values. As Figure 2,
shows given even hasty varying changes a meaningful signal
can be extracted (see Figure 3 for comparison).

b) Results for visual data only: Next we were interested
in exploring the effect of SFA when applied to visual data
only. Again a meaningful signal is extracted as the slowest
varying signal roughly compatible with the outcome of
acceleration only. However jitter is still high mostly due to
noise in the input visual features, which are fed unfiltered
to the SFA node, resulting in a harsh influence of some
wrongly segmented frames due to i.e. segmentation errors
which make the features behave discontinuously in time (for
a short period, in general the visual features behave quite

nicely and postures that are close in motor space are usually
also close in visual feature space).

c) Results for complete input dimension data set:
Combining all data dimensions is the last experiment we
conducted. The result of this application is that combin-
ing additional information from different sources obviously
works best and can extract a rather clean semantic signal
(see Figure 3 for the result and the ground truth signal).

III. POSTURE CHANGE DETECTION

Given promising results when applying Slow Feature
Analysis to static posture recognition, we hypothesized that
the algorithm might proof helpful when trying to detect the
dynamic change of posture. In adaptive and tight sensorimo-
tor control strategies of biped walking, detecting the tripping
and falling of the robot is evidently of utmost importance.
However, due to the fast changing nature of acceleration
sensor values when the robot is moving, detecting such
changes is not an easy task. Moreover, since the detection has
to be instantaneous classical signal processing strategies like
low pass filtering are not applicable. Until the low pass filter
has integrated enough information the robot might already
be lying on the ground.

To investigate the power of SFA to detect sudden posture
changes, we applied SFA to several sequences of acceleration
data generated by a neural implementation of a sensorimotor
loop controlled walking pattern executed on A-series robots.
The gait pattern starts with an oscillation in the coronal
plane, initiated by letting the robot move its feet such that
it subsequently displaces its weight from one foot to the
other. Then, as soon as a sensory threshold is reached, the
robot starts moving its feet to the front, beginning to walk.
Although the walking pattern is quite stable, robots tend to
fall to the ground when walking on surfaces with a high grip,
such as carpets or natural surfaces.

In applying SFA we are specifically looking for two types
of information: first, we want to extract information about
normal changes of the robot’s state generated by the coronal
and sagittal oscillations of the body due to control asserted
by the neural controller. Second, we want to detect abnormal
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Fig. 4. Original data for posture recognition. Left: original data over 4000 time steps with 86 data dimensions (one signal per dimension) including
acceleration sensor data, visual features, driven and measured motor positions as well as torque. Middle: values from acceleration sensors only over the
same time series. Right: visual features only over the same time series. All time series (inevitably, since from the same pattern of activity) clearly exhibit
periods of relative calmness. These are the periods where the robot has tripped, fallen over and rested on the ground. Essentially, the changes between
these periods is what we are interested in detecting using Slow Feature Analysis.

state changes shortly before the robot trips and falls to the
ground. Components that reflect such exceptional changes
will be used to trigger reflex like correction movements that
help prevent the robot from falling.

A. Data

The set of 16 acceleration sensors located on different
parts of the robot was used as input data to a quadratic
SFA algorithm. Contrary to the previous experiments data
was recorded using a frame rate of 50Hz. Data was not
aligned and time synced with the much lower frequency
camera frame rate. Analyzed sequences had a length of 15-30
seconds and all had the same event structure: the robot would
initially stand still for a short period of time, followed by
the start of the coronal oscillation, which eventually results
in forward motion. After some time of walking, the robot,
in all sequences, trips and falls to its back or front.

The same sequences were first used for training and
testing. Later, in order to test the generalization potential
of the algorithm and, in particular, of learned weights, SFA
learning step was applied to a combination of different
sequences, which contained sections that included the robot
falling to its back and front. The learned SFA weights were
then applied to previously unencountered sequences of data
of the same robot as well as of other robots of the same type.

B. Algorithm

Best results were achieved when using quadratic SFA
repeatedly, passing only a restricted number k of components
from one SFA to the next one. k is chosen small to avoid
computation time. Experiments showed that for our particular
data repeating SFA 5 times yields the best results with respect
to the shape (less jitter) of the resulting components (see
Figure 5 for comparison).

The choice of the number of components passed to the
next round slightly differed when applying learned SFA
weights to the training data and the test data. While learning
and testing on the same data clear components are obtained
when repeating SFA five times and letting k = 24. Decreas-
ing the number of iterations or of the passed components
leads to noisier extracted components, while an increase does
not yield any significant improvement for the particular data.

In order to compare the resulting components the η value
(proposed in [10]) was used: η(y) := T

2π

√
∆(y). We used

the correlation coefficient to measure similarity between
calculated slowest components and input data.

C. Experimental Results

Figure 5 shows results for data from a short sequence
that consists of the robot starting to walk about 1

3 into the
sequence, and a tripping and falling of the robot towards the
end. The change in posture when the robot falls are picked up
by the slowest varying components for both application pat-
terns of SFA (y1(5) being the slowest component computed
by applying SFA five times, and y1(1) resulting from the
application of a single SFA node). However, only the single
quadratic SFA node application also picks up the transition
from the oscillatory phase (the robot is still standing) to the
actual walking phase.

Slower components extracted by SFA reflect oscillations
in the coronal and sagittal plane. Figure 6 depicts the compo-
nent with the highest correlation to the coronal acceleration
sensor on the shoulder of the robot in comparison with the
sensory input. Figure 7 plots the component highly correlated
with sagittally oriented acceleration sensor on the robot’s
shoulder.

The first component potentially useful for detecting the
robot’s falling, is the eight slowest signal y8(5) resulting
from a sequential five node SFA network (see Figure 8). This
signal exhibits a strong peak at t = 1380 shortly before the
slowest components y1 registers the fall. Another peak shows
that the signal picks up the robot’s initial step to initiate the
walking at t = 300. Analyzing the weights wj calculated by
SFA reveals that on average the sensors located on the right
foot assert the strongest influence on the extracted signal.
More precisely, the ten signals that influence y8(5) most,
consist of linear combination of nonlinear expanded mono-
mials with at least one factor being the right foot acceleration
sensor, suggesting that at least in the observed sequences
the robot falls down because its right foot trajectory collides
unfavorably with the ground.



Fig. 5. Slowest varying signals extracted by SFA for different iterations
(k = 24) on a short walking sequence. Left: signal extracted by a single
quadratic SFA node. Right: slowest signal obtained when using a sequential
SFA network of five nodes. Notice that the right signal does not change
when the robot starts walking at t = 300. However, both signals mirror the
robot’s fall to the ground around t = 1400.

Fig. 6. Slowest varying signal that correlates highest with coronal shoulder
acceleration sensor values for single quadratic SFA node y1 as well as for
the five node sequential SFA condition y5(5), as well as sensor input x2.
y5(5) is clearly a smoothed version of the original coronal sensor data.

Fig. 7. Magnified section of a highly sagittally correlated slowest
component and sagittal shoulder acceleration sensor.

Fig. 8. Component indicating collisions of the right foot with the ground.
The right foot sticks to the ground, which is the reason for the successive
tripping of the robot.

IV. CONCLUSION AND FUTURE WORK

We have demonstrated how Slow Feature Analysis, a
biologically inspired algorithm based on the slowness prin-
ciple can be used to extract semantically relevant signals for
detecting the posture and the change of posture of humanoid
robots. Results were compared to ground truth provided
by the experimenter and proved to be promising. In fact
the results described in this paper are already employed in
research modeling the grounded semantics of posture verbs
with robots [4]. The results for posture change detection are
even more exciting as they seem to open the possibility of
stabilizing walk gait patterns in an unsupervised fashion. The
unsupervised extraction of such meaningful signals to our
knowledge is prior art for this particular field of application.

While previous work has been conducted on supervised
classification of motion patterns (especially for human sub-
jects augmented with acceleration sensors), nobody has tried
unsupervised classification with robots. Which is largely due
to the recency of humanoid robot development, but also due
to the dominant paradigm in humanoid motion control, which
is based on forward models coupled with no or sparse sensori
feedback [2].

The investigations described in this paper are by no
means completed. Future work will be concerned with the
application of the extracted signals as feedback into the
neural walking gait controllers and as a training signal for
posture categorization algorithms.
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